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The problem of minimizing the mass of heat insulation of a laminar cylinder, while 
ensuring the specified damping of external temperature perturbations, is considered. 

In [I, 2], the problem of minimizing the mass and thickness of a plane-laminar thermo- 
protective panel, while quenching the harmonic temperature perturbations to a specified level, 
was solved. The same problem was solved for nonharmonic perturbations in [3]. In [4], the 
optimal structure of a plane panel of constant thickness providing maximal quenching of the 
harmonic temperature perturbation was found. 

In the present work, the problem considered in [1,3] is solved, with some additional 
peculiarities, for the case of cylindrical symmetry. 

Suppose that a three-layer cylinder (Fig. i) is placed in a medium with a periodically 
varying temperature To(t). The heat transfer at the external boundary of the cylinder r = 
R2 is described by a boundary condition of the third kind. When r = 0, the condition of fi- 
niteness of the temperature is satisfied. The contact between the layers is supposed to be 
ideal. The radius of the internal layer and the thlckness of the third are fixed. The struc- 
ture of the external and internal layers is specified (the thermophysical properties in these 
layers may be constant, or depend continuously or piecewise-contlnuously on the radius). The 
structure and external radius of the middle layer, occupying the region re[R1,1], is not 
fixed in advance. This layer may be synthesized from a specified finite set of materials~ 
It is required to find the structure of the middle layer and the value of Z such that the 
total mass of the whole cylinder is a minimum and the temperature perturbationwhen r = Rx at 
the boundary of the first and second layers reaches a specified value. 

In each layer with continuously varying properties, the temperature satisfies theheat- 
conduction equation in cylindrical coordinates 

= ( OT (r, t)~ c(r) OT(r,t) 1 0 r~(r) , (1) 
Ol r Or \ Or' } 

the boundary conditions 

% OT (r, l) 
Or 

the ideal-contact conditions 

O, % OT(r,t)  
= tz [To (t) - -  T ( R , ,  t ) ] ,  ( 2 )  

Or 

IT (r, t)l + = [~ OT(r,or t)] +=0' r6[O, R21 (3) 

and the periodicity condition 

T (r, t --l- t*) = T (r, t). (4) 

The temperature of the external medium T0(t)~ which is a periodic function of the time, is 
written in the form of a Fourier series 

o0 

To (t) = Re Z z~-exp (iko)t), 
k = 0  

(5) 
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where ~ ffi 2~/t*; z k is the spectral density of the external temperature perturbation. 

The condition in Eq. (4) means that steady conditions are considered, i.e., the tempera- 
ture and heat flux in each layer may be written in the form 

oo 

T (r, t) = Re ~ ,  y., (r) exp (iko~t), 
h = O  

or 

OT (r, t) = Re ~ y,~ (r) exp (iko~t), 
Or k=o 

where Yxk, Y2k are the complex amplitudes of the temperature and heat flux, respectively, at 
frequency kw. The ideal-contact condition in Eq. (3) implies the continuity of Yk(r) ffi {Y,k, 
Yak} for all rQ[0, R=] . At each k, these amplitudes satisfy the system of equations 

y'~ (r) :- Ahy,, (r), (6) 

A~ := I  0 1 / r ]  
ikr --I/r ' 

which is valid over the whole interval r6[0, R=] , and theboundary conditions 

y ~  (0) = 0, y~h (R~) = = (zh - -  y ~  (R~)). (7) 

In formulating the optimization problem, y~k(r), yak(r) play the role of phase variables, 
and the system in Eqs. (6) and (7) plays the role of the system being controlled [5]. 

The structure and external radius of the second layer Z are chosen as the control. It 
is expedient to introduce the characteristic function of the laminar medium u(r), which, at 
each point rQ[Rb l] takes an integer value equal to the ordinal number of the material at 
this point in the initial set. It is evident that specifying u(r) uniquely determines the 
number, dimensions, and material of the layers, in other words, the structure of the laminar 
medium. In addition, u(r) uniquely determines the distribution function of all the thermo- 
physical properties of the medium over the radius, i.e., % ffi %[u(r)], c = c[u(r)], 0 = 0[u(r)]. 
Therefore, the pair {u(r), Z} is chosen as the controlling variables. Here the function u(r) 
belongs to the class of piecewise-constant functions 

u ( r )  = { ] , l r s < ~ r < r ~ + l } ,  s =  1, S, (8) 

the region of values of which is a finite set consisting of integers from I to M 

h6{1, M}, 

where  M i s  t h e  number  o f  m a t e r i a l s  o f  t h e  s p e c i f i e d  s e t .  
mass  i s  p o s e d ,  t h e  m i n i m i z i n g  f u n c t i o n a l  t a k e s  the  form 

l R.. 

Fo [u (r), l] ~ .[ rp [u (r)l dr + .!" r[ (r) dr ~ rnin. 
R t  l 

(9) 

Since the problem of minimizing the 

The density distribution when r 6[I, R2J is fixed, and hence the functional may be written in 
the form 

I t 

Fo [u (r), q = [ rO [u (r)] dr + j" (x + 0 ~ (x) dx, (101 
R,  0 

where L = Ra -- Z = const; x = r - Z; the function w(x) is specified on the segment 

The temperature perturbation at point r is understood to be the quantity [3] 

Q ~,) = J" r~ (,-, t) at = ~ l Y ~  (,')l ~. 
0 2 = 

xE[O, Lt 

(11) 
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Fig. I. Structure of laminar cyle 
indef. 

Taking account of Eq. 
point r = Rt is written in the form of a functional 

F~ I~ (~1, ~1 ~ ~ lul~ (R01 ~--  n ~ ~ Iz~l ~ = 0, n~<!.  
I t =  1 h ~  I 

(ii), the constraint imposed on the temperature perturbation at the 

(12) 

Here the first sum describes the temperature perturbation at the point r = R,, and the second 
describes the temperature perturbation at points of the external medium; the parameter ~ is 
specified in advance. 

Mathematically, the optimization problem may be formulated as follows. Among the piece- 
wise-constant functions u(r) in Eqs. (8) and (9) defined on the segment [R,, Z] and the num- 
bers Z > R,, it is required to find the pair {u~ Z ~ corresponding to a minimum of the 
functional in Eq. (i0) under the constraint in Eq. (12). The phase variables appearing in 
Eq. (12) are determined from the solution of the boundary problem in Eqs. (6) and (7). This 
optimization problem differs from those considered in [1-3] in two respects. First, the 
functional in Eq. (12) is determined at the internal point of the segment [0, R=] at which the 
boundary problem for the phase variables is specified. This means that the vector of conju- 
gate variables at the point r = R, will undergo a discontinuity [5]. Second, the control 
u(r) only varies on the internal section [Rt, l] of the segment [0, R2]. These features are 
easily taken into account in deriving the necessary conditions for optimality (NCO), but it 
is simplest to reduce the problem to that studied in [1-3], transferring the boundary condi- 
tions from the point r = 0 to the point r = R, and from the point r = R2 to the point r = Z. 
The solution of Eq. (6) is written in the form 

YCh (r) = Ph (r) Y14 (r) H- qh (r). 

The f i t t i n g  f a c t o r  P k ( r )  i s  found  f rom t h e  s o l u t i o n  o f  t h e  R i c c a t i  e q u a t i o n  

1 1 
P~ -F ~ P~ + Ph - -  ik~c = O, Ph (R2) = --:- ~, 

r 

and q k ( r )  f rom t h e  l i n e a r  e q u a t i o n  

q~ 4- qh (_~__ + lr ). : O, qk (R~) =~zk. 

Then t h e  b o u n d a r y  c o n d i t i o n s  a t  r = Rt and r = Z a n a l o g o u s  to  Eq. (7)  may be  found  

where a i n  = Pk(R~) ;  ae. x = p k ( Z ) ;  z k = q k ( 1 ) / p k ( l ) ,  

Thus, in the above mathematical formulation of the optimization problem, the phase var- 
iables ytk(R,) are found from the solution of the boundary problem in Eqs. (6) and (13), and 
the optimization problem itself coincides in form with those considered in [I-3]. 

Since the region of values of the controlling function in Eq. (8) is the discrete set 
in Eq. (9), finite variations in sets of smaller measure are used in deriving the NCO and 
organizing the computational algorithm, Analogously to [1,4], the NCO for the given problem 
may be formulated as follows. Suppose that the pair {u~ Z ~ is the optimal control, and 
Y,k, Y2k define the corresponding phase trajectory determined at each k as the solution of 
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the boundary problem in Eqs. (6) and (13) such as to satisfy the constraint in Eq. (12). Then 
there exist vector functions ~ = {~xk, ~ak} and Tk = {~Ik, Tak}, satisfying the boundary prob- 
lems. 

(14) 

and 

q)~k (RI) ----- CZinqhh (R1), 

L Z  
~ex ] 
[u (t)l y,.k(0 

(15) 

and such that the Hamiltonian constructed on this basis 

L 

0 k : l  

oo 

B = 2Re ~,~ Yl~ (R0 (Plh (Ra) = const 
h ~ l  

(16) 

reaches its maximum relative to the argument n at the optimal control at almost all r6[Rh l] 
(the expression <a, b> denotes a scalar product) 

H ( . ,  u ~ = max H ( ' ,  n). 
n ~ l , M  

In investigating the NCO, it is expedient to write the Hamiltonian H in  the form 

(17) 
�9 ! 

H (. ,  n) = - -  ~ , ( . )o (n)  + ~ ( . ) \ - - ~  + ~ ( . ) c ( n )  - -  ~,.(.), 

1~(.)----r ,  ~(.)=B-~(loIu(l)]+ ~w(x)dx)Re yo.h*~h, 
0 h ~  1 

L 

0 k = l  

oo 

[~(.)____ 1 B_,(lo[u(l)]+.iw(x)dx)ReXy2h,eh, 
r 0 k ~ l  

where (,) denotes the set of arguments Yk' ~k' ~k' r of the Hamiltonian, calculated for the 

optimal control; B*, Ba, B3, B~ are functions continuous in r. Inside the interval [RI, ~], 
complex amplitudes of the temperature Yxk and heat flux Yak cannot vanish at any k inside the 
interval [RI, l~. An analogous statement holds for ~k" Taking this into account, it may be 
shown that all the B i in Eq. (17) are larger than zero. The condition B= > 0 may be used for 
preliminary selection of those materials from the initial set which may ~e used in the optimal 
construction. Consider the function 

! 
G (V~, ?~, n) = - -  p (n) sin y~ + ~ cos ?1 cos ~2 + C (n) COS Vl sin y~ (1B)  

(n) 
and the set 

= o+ ]  o -;-]} 
I. ne~ I,M~. 
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Fig. 2. Diagram of materials ap- 
pearing in the optimal construc- 
tion and their mutual position, 

TABLE I. 

No. of 
material 

Thermophysical Properties of Materials 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

I ' Volume 
Density, Thegnal i snecifie 

Iconouct.,[ i~zt ln6 
],/c m.K i,/m,. 

0,047 
0,041 
0,038 
0,052 
0,116 
0,041 
0,035 
0,047 
0,043 
0,041 
O, 03~ r 
0,041 
0,03~ 
O, 07( 
0,064 
0,09] 
O, 08~ 
0,07 
O, 05( 

O, 195 
0,13 
O, 052 
O, 163 
1,381 
0,12 
0,09 
O, 17 
O, 128 
O, 085 
0,068 
0,2 
0, I 
0,3 
0,2 
0,28 
0,24 
0,16 
0,08 

150 
100 
40 

125 
600 
80 
60 

100 
75 
50 
40 

200 
I00 
300 
200 
350 
300 
200 
100 

No. of 
material 

20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 

Density. [Thermal 
conduct. 
I / c  .m.K 

kg/m ~ ... .  

50 
000 
800 
600 
400 
200 
800 
600 
800 
30O 

1000 
800 
60C 
40f 
30C 

1006 
80( 
60C 

0,048 
0,15 
0,13 
0,1 
0,081 
0,058 
0,16 
0, 12 
0,162 
0,07 
0,29 
0,2l 
0,14 
0,! 
0,081 
0,23 
0,17 
0,10~ 

Volume 
specific - 
heat, I0 ~ ' 
1/m 3.  K 

0,04 
2 , 3  

1,84 
1,38 
0,92 
0,46 
1,84 
1,38 
1,831 
0,69 
0,84 
0,672 
0,504 
0,336 
0,252 
0,84 
0,672 
1,368 

composed of the numbers of materials in the initial set which permit a maximum of the function 
G with respect to the argument n, when y, and Ya independently take values in the range from 
0 to 9/2, It may be asserted that the materials which may appear in the minimum-mass construc- 
tion have numbers from the set D. The other materials may be excluded from consideration in 
advance. In Fig. 2, the numbers of the materials from Table 1 which permit a maximum of the 
function in Eq. (18) with variation in y, and Y2 within the corresponding ranges are shown. 
It is evident from Fig. 2 that only six of the 37 initial materials may be used in the optimal 
construction. In addition, it may be asserted that, in the optimal construction, materials 
with numbers corresponding to regions with common boundaries in Fig. 2 may be side by side. 
Thus, a preliminary idea of the structure of the optimal construction may be obtained. 

The results of numerical calculations are now consideredfor the following parameters of 
the problem. The temperature of the external medium varies according to a sinusoidal law with 
a period equal to one day. The external heat-transfer coefficient a = 20 J/m2.sec*K. The in- 
ternal layer of the cylinder has a radius RI = 0.6 m and consists of material with the follow- 
ing thermophysical properties: p = 500 kg/m s, ~ = 0.15 J/m,sec,K, c = 0.847.i06 J/mS.K. The 
external layer (thickness 0.02 m) consists of material with p = 1600 kg/m 3, I = 0.65 J/m.sec.K, 
c = 2.6.106 J/m'.K. The materials of the initial set from which the internal layer may be 
formed are given in Table I. ~,~en fl in Eq. (12) is i/i0, which corresponds to tenfold damping 
of the external temperature perturbation, the following construction is optimal: the region 
from 0.6 to 0.865 m corresponds to material ii and the region from 0.865 to 0.88 m to material 
3. 

NOTATION 

t, time; r, radius; 0, density; c, volume specific heat; X, 
external heat-transfer coefficient; T, temperature; t*, period; 
constant. 

thermal conductivity; e, 
m, frequency; n, specified 
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PERIODIC PULSE HEATING OF METALS 

A. L. Glytenko and B. Ya. Lyubov UDC 536.241:535.211 

The article deals with the effect of the time-dependent form and heating by preced- ~ 
ing pulses on the resulting temperature field in metal subjected to periodic pulsed 
heat treatment. 

The widespread use of lasers in various technological processes requires the construction 
of theoretical models describing~the effect of laser radiation on substances. At present 
there are available many theoretical investigations dealing with continuous and pulsed treat- 
ment of materials; their results were generalized, e.g., in [1-7]. However, periodic pulsed 
loading received much less attention [8, 9] although in practice it is ever more widely used. 

A unidimensional temperature field T(x, t) in a half-space with an arbitrary time depen- 
dence of the energy flux density can be written in the form [i0] 

t 

1 f f . T  t T = Tn + - - ~  q (~) exp [--xZ/4a (t -- ~)1 dS. 
,, l / t  _ ~ 
0 

(1) 

For expression (i) we use t h e  Laplace-Carson transformation [ii] 

= T,cq- "V~ q-(p) exp (--x ]/p--/a-). (2) 

To find ~(p), we expand q(t) into a Fourier series, Eq. (2) assumes the form 

where 

+= Vp--e• ( - x  v~ p/a ) 7"---r,,~ C a  "~ c,, 
s p- -  i(oh 

ch = ~ q(t) exp(--icokt)dt, r162 k=O,  1 . . . . .  
"r b 

mo = 2~/T, T is the period of action, i.e., the interval between the instants of the onset of 
two adjacent pulses. Going over to the original, we have 

T = T n +  

-,~o 
] / a  ~ ck(i--1)exp(ic%t) I e x p [  x 

2 / T 
v x 
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